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Abstract. The field-theoretical gauge model for a superconductor, generalized ig/Zn
component complex order parameter is considered. The question of the order of the phase
transition occurring in this model is discussed. Previous renormalization-group calculations
suggest that in such a model a fluctuation-induced first-order phase transition occurs. We re-
examine previously obtained expressions for the renormalization-group functions in the two-
loop approximation in three dimensions. Special attention is being paid to the fact that the
corresponding series might be the asymptotic ones and therefore have zero radius of convergence.
We discuss the possible ways of analytical continuation of the series obtained. Comparing
results obtained by ‘direct’ calculations with those obtained byéPadhlysis and the Pad

Borel resummation technique, the conjecture is made that in the model under consideration
there still exists a possibility for a second-order phase transition.

1. Introduction

The smallness of the correlation lenghin high-T, superconductors leads to an increase
of the temperature region nedk where fluctuation effects [1] might be observed. The
general belief in this field is that the phase transition is weakly of first order [2] (for another
model see [3]). This fluctuation-induced first-order transition could only be seen within
such a small temperature region roufidthat it is unobservable in experiment. In |dfly-
superconductors with a large correlation lengthmean-field behaviour is observed, since
fluctuations are relevant only unobservable rigaas the Ginzburg criterion states. Support
for this picture has been given in liquid crystals, where the same picture applies [4].

In high-T, superconductors in several experiments critical effects have been observed
in the specific heat [5,6]. They have been analysed with scaling exponents related to the
fixed point in the uncharged model [7]. In the presence of a magnetic field, where some of
the experiments have been performed, the situation is more complicated, however, and the
guestion of the order of the transition remains [8].

The theoretical model which is used to describe the relevant critical behaviour is the
usual ¢*-model coupled to a gauge field [2]. The minimal coupling to the gauge field
makes the model (i) different from the model describing the superfluid transitiéhién
and (ii) leads, as is the general belief, to a first-order transition instead of a continuous
transition as in the uncharged system*bfie. The arguments for a first-order transition in
this model are based on a runaway solution instead of a fixed point in the space of the static
parameters found iene-loop order In [9] we calculated the two-loop flow equations for
the static parameters and indicated that a stable fixed point might be possible, consequently
a second-order transition would appear.

0305-4470/96/133409+17$19.5@C) 1996 IOP Publishing Ltd 3409
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An attractive feature of the flow found in [9] was that it discriminated between type-l and
type-Il superconductors, depending on the initial (background) values of the couplings. For
small values of the ratio (coupling to the gauge field)/(fourth-order coupling) (appropriate
for type-ll superconductors) the flow comes very near to the fixed point of the uncharged
model but ends in the new superconducting fixed point. For large values of the ratio (type-
| superconductors) the flow runs away. For values of the ratio in between, the critical
behaviour might be influenced by a second (unstable) superconducting fixed point with
scaling exponents quite different from the uncharged model.

Monte Carlo simulations of the three-dimensional lattice superconductor model [10, 11]
indicate a second-order phase transition moving from the type-1 superconductor region to
the type-1l superconductor regime, although the possibility always exists of a very small
first-order transition in the type-Il region. More recently, from a self-consistent theory of the
normal-to-superconductor transition it was concluded that the first-order transition might be
an artefact of the breakdown of theexpansion and a non-trivial critical point was predicted
[12].

In this paper we therefore reconsider the two-loop equations and the resulting flow and
calculate effective exponents, given by the zeta function, which have also been calculated
in two-loop order in [9]. The main point here is that we take account of the fact that the
loop expansion is only an asymptotic one. We apply resummation techniques to the beta
functions of the flow as well as to the zeta functions. In this way we find several fixed
points with new scaling exponents and a rich crossover behaviour.

The structure of this paper is as follows. In section 2 we describe the model we
are interested in, give the expressions for the renormalization-group functions in the two-
loop approximation and describe the results obtained on their basis without applying a
resummation procedure. Section 3 is devoted to the study ofthections which are
the functions of two variables and corresponding flows on the base of the-Backl
resummation technique and Radpproximants for the appropriate resolvent series. In
section 4 we calculate the asymptotic and effective values for the critical exponents. The
results are discussed in section 5.

2. General considerations

2.1. The model

Starting from the Landau-Ginsburg free-energy functiofal, A) for a generalized
superconductor in/ dimensions with the vector potentigd and the order paramete¥
consisting ofz /2 complex components one can describe the fluctuation effects by an Abelian
Higgs model with the gauge-invariant Hamiltonian [2]:

1 1 . u 1
H= /ddx {2r0|%|2 + 51V - iegAo)Wol® + 4—?|%|“ + 5V Ao>2} @)

depending on the bare parameteyseg, ug. The parametery changes its sign at some
temperature, the rest of the parameters being considered as temperature-independent. For
the coupling constardy = 0 no magnetic fluctuations are induced and the model reduces to
the usual field theory describing a second-order phase transition and corresponding to the
particular case: = 2 to the superfluid transition ifHe.

Recent two-loop results [9] for the renormalization-group functions corresponding to (1)
were obtained on the basis of dimensional regularization and minimal subtraction scheme
[13] (for calculations atd = 3 see [14,15]). The flow equations for the renormalized
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couplingsu, f (f = €?) are

af
Ly =Pr (2)
du

where [ is the flow parameter and the expressions fbfunctions in the two-loop
approximation read [9]

Br = —sf + ¢ f2+nf? (@)
8, 3n+14 2n + 10
ﬁu:—eu+n+ u? — "t u3—6uf+18f2+;u2f
6 12 3
71n + 174
+%u 2= (Tn+90)f3 (5)

with ¢ = 4—d. The previous analysis of the equations of type (4) and (5) either in one-loop
[2] or in two-loop order [9] was based on a direct solution of the equation for the fixed
point. In the present study we want to attract attention to the fact that the series have zero
radius of convergence and that they are known to be asymptotic at best. Therefore some
additional mathematical methods have to be applied in order to obtain reliable information
on their basis. In fact, the asymptotic nature of the series for the renormalization-group
functions has been proved only in the case of ¢flemodel containing one coupling of

O (n)-symmetry f-vector model) where the high-order asymptotics for these series is known
[16—-18] in analytical form. These results gave the possibility of obtaining precise values of
the critical exponents for the-vector model by resummation of the corresponding series for
the renormalization-group functions (see e.g. [14,19, 20]). For the ‘charged’ model we are
considering here there is, to our knowledge, no available information similar to that obtained
in [16-18] for the ‘uncharged’ cas¢ (= 0). Nevertheless, in the case of a model containing
several couplings of different symmetry the asymptotic nature of the corresponding series for
the renormalization-group functions is rather a general belief than a proven fact. As one such
example we mention here the weakly dilutedrector model, described by a Hamiltonian
containing two fourth-order terms of different symmetry [21]. The asymptotic nature of
the double series for the renormalization-group functions in terms of the coupling constants
has not been proven for this model up to fowHowever, an appropriate resummation
technique (applie@s if these series are the asymptotic ones) enables one to obtain accurate
values for critical exponents in three dimensions [22—-25] and to describe (inth& case)

the experimentally observed crossover to a new type of critical behaviour caused by weak
dilution [26, 27]. These results are also confirmed by Monte Carlo [28, 29] and Monte Carlo
renormalization-group [30] calculations. We therefore do not hesitate to use these methods
in our case.

2.2. e-expansion results

Keeping all the above-mentioned problems in mind, let us have a closer look at the series (4)
and (5). We start by recalling results ot&expansion for thg-functions [2, 9]. In second
order ine one obtains three fixed points: the Gaussiai¥ (= f*¢ = 0), the ‘uncharged’

(¥ # 0, f*Y = 0) and the ‘charged’(* # 0, f*C + 0), to be denoted as G, U, C. The

1 Only for the case when one of the couplings is equal to zero does one obtain a series which is proved to be the
asymptotic one.
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expressions for them read

G:u®=0  f*©=0 (6)
U: u¥ =ule +ule? fY=0 7)
C: uC=ufe+uSe? €= fle+ ffe? (8)
where
s 6 ,  18Bn+14
M1=n+8 2 = (n+8)3
¢ 3(n+36) + (n? — 360 — 21602 o a
= 3n(n + 8) 2 = aj
3
ﬁ=§ ff=—@>n
a1=1+n-§8uf—%6

3n+14 .3 6)\° 6\' (n+54
a=""15 (u§) — 6nuf <n) + 36n (n) — f(uff
3(71n + 17 6)\°
_X eri“)ug n () (Tn +90) .
n n
Almost all physical results concerning the phase transition described by the field theory
(1) were based on the information given by (6)—(8). The main ones read:
(i) the fixed point U is unstable in th¢-direction atd < 4 with the stability exponent
9Br
rvu=uY, f=fYV=0="L] =—
! of ly
(i) the fixed point C appears to be complex fox n. = 3659 [2] already in one-loop
order. The stability exponent given by
Bu

0
M =uC, f=fC=""
ou

’

C
and in the two-loop order reads

36\ 432048 "
Ay = —&S s = |:<1+> —7’12 :|
n n
leading to an oscillatory flow im in one-loop order belowt. with the solution [9, 37]:
6f1°°

fi= m (9)
0= f)— { tan| > In(£ () £~4%)
“O=1D5. 78\ [2 Ff
+arctan(2(n+8)u+n+36>i| B n+36} (10)
snf ns n

where f andu are the initial parameters at= 1;

(i) from the condition of positiveness of the fixed-point coordingte (f = ¢?) it
follows that ate = 1 n > 36.

Finally, one concludes that for the ‘superconductor’ case 2 of most physical interest
no stable fixed point exists and therefore the observed phase transition is of first order.
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2.3. Resummation

Nevertheless, one should note that such a straightforward interpretation oettpansion

data is questionable and a method of analysis of the serig&fianctions (4), (5) avoiding
strict e-expansion and exploiting information about the accurate solution for the pure model
case ald = 3 was proposed [9]. Also from the comparisonseéxpansion values foy*
(giving a positive value off* only for n > 36) with the value off* obtained without
g-expansion (remaining positive for al) the conjecture was made that the lower boundary
for n resulting in a negativg’* might be an artefact of the expansion procedure.

As is well known nowadays the appropriate resummation technique applied in the theory
of critical phenomena to the asymptotic series for the renormalization-group functions
enables one to obtain extremely accurate values of the critical exponents. Two main
ways of resummation are commonly used: (i) resummation based on the conformal
mapping technique and (ii) P@dBorel resummation. Case (i) is based on the conformal
transformation, which maps a part of the domain of analyticity containing the real-positive
axis onto a circle centred at the origin and the asymptotic expansion for a certain function
is thus re-written in the form of a new series (see [20] for a discussion). However, this
resummation is based on the knowledge of subtle details of the asymptotics (location of
the pole, high-order behaviour) which are not available in our case. In the absence of any
knowledge about the singularities of the series the most appropriate method which can be
used to perform the analytical continuation is the @agproximation resulting in Pad
Borel resummation techniques (ii) (see e.g. [19]). In the following we are going to apply
this method to the special case pf= 0, so let us concentrate on it in detail.

Starting from the Taylor series for the functigiu):

fu) = Z cju’ (11)
j=0
one constructs the Borel transform
Fun=Y" i’;(m)f’ . (12)
>0/

Then one represents (12) in the form of the ®@agproximant=F2¥(,¢) (in the subsequent
analysis, proceeding in the two-loop approximation we will use the [1/1¢ Ragroximant)
and the resummed function is given by

FReSw) =/ dr e FPa% (1) . (13)
0

However, the technique described above, generally speaking, could be applied only to an
alternating series like

fu) = Z(—l)-icjuj ¢j > 0. (14)

j=0

The problem is that fractions of the typg/c;.1 enter the denominator of the Fad
approximant and a pole in the integral representation of the resummed function could appear
if the series is not an alternating dndn the next section we will show how this procedure
works in the case when only one coupling,is present.

1 In this case the principal value of the integral (13) could be taken, but generally speaking it is preferable to
avoid such situations (see also [19]).
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3. Fixed points and flows in three dimensions

We will proceed here by considering the flow equations (2) and (3) directly-a8. Let us
look for the solutions of the fixed point equationsdat 3 paying attention to the possible
asymptotic nature of the corresponding series (4) and (5).

3.1. The uncharged fixed point U
Substituting the valug* = 0 into (5) one obtains the following expression for the function
B. = Bulu, f*=0):
n+8 , 3n+14 4
6 12 -
Solving this polynomial for the fixed point one obtains for the non-triwial> 0:

L n+8  /n?—20n—104
_ 16
= r1aT T 3it1a (16)

By =—u+ (15)

0500 §8Y

— Padé-Borel resummation
- = — [1/1} Padé-approximant

0.300 a
Joietk Non-resummed function.

0.100

LA O S T A A 2074 M 0 B0t B B B O

0.5 - 15 2.0
-0.100 <

Lita e baaeagrpapletae iz etiiilairel

-0.300

Legpspasitalins

-0.500
Figure 1. g,-function of the uncharged modﬁ];J atd =3,n=2.

and immediately the ‘condition of existence of non-trivial soluti¢H’ follows qualitatively,

very similar to those appearing in the stricexpansion technique (see [2,9] and (7) of the
present paper as well): the solution exists only for certain values-ofi, = 24.3! From

figure 1 one can see that the functig (equation (15)) does not intersect thaxis at any
non-zero value of: for n = 2. In the O (n)-symmetricg*-theory atd = 3 this situation is

well known (see e.g. [31, 32]): the-function calculated directly at = 3 does not possess

a stable zero for realistic values of nevertheless, in three-loop order the presence of the
stable fixed point is restored. To avoid this artefact appearing in the two-loop calculation one
can either resum the series for thdunction or construct the appropriate Raapproximani

in order to perform the analytical continuation of (15) out of the domain of convergence

1 The last possibility was chosen by Parisi [31] in order to restore the presence of a stable solution for the fixed
point in the two-loop approximation.
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(which is equal to zero for the series in the right-hand side of (15). Let us try both ways.
Representing (15) in the form of the [1/1] Fadpproximant;

c -1+ A,u
U,Padc u
, _ 17
B 11 B (7)
one obtains
2
Au:n +7n+ 22 Bu=3n+14 (18)
6(n + 8) 2(n+8)
and, solving the equation for the fixed point
,Bli’J’Padé(M*P'Padé) -0 (19)
one obtains
; 6(n + 8)
*U,PadE
’ = - 20
" n2+4+7n+ 22 (20)

So we obtained a qualitatively different situation. The behavioug o) for n = 2

is shown in figure 1 by the broken curve. If one is interested in more accurate values of
u* some resummation has to be applied. Choosing thé-Fatel resummation technique

and following the scheme (11)—(13) one obtains for the resummed fungtéfs

uB,

the coefficients4,, B, are given by (18)F (x) = xe*E1(x), where the function

Ei(x) =€* / dre’(x + 1)t
0

is connected with the exponential integral by the relation [33]:
Ei(x £i0) = —Ei(—x) Fix.

The behaviour of the functiog-R®Yu) is shown in figure 1 by the full curve. And the
fixed point coordinate:*Y-Res is obtained by solving the non-linear equation

BU-ResURes) — 0 (22)

Coordinates of the fixed poinft*,U obtained on the basis of the Radpproximation and
Pade—Borel resummatioru("-Pa® ,*U-Re9) for differentn are given in table 1.

Table 1. Fixed-point U coordinate*V as a function ofs. u*Y:Pa¥: obtained on the basis of
the [1/1] Paé& approximanty*Y-ReS obtained by Pae-Borel resummation.

M*U,Pada’ M*U,Res

N

1.800 1.315
1.500 1.142
1.269 1.002
1.091 0.888
0.951 0.794
0.840 0.717
0.750 0.652
0.676 0.597

O~NO OO~ WNPRP

1 The series in (15) appears to be an alternating one and this scheme can be applied without any difficulties.
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Table 2. Fixed-point C coordinatg*C as a function ofi. f*-PI": obtained by direct solution
of the equation for the fixed pointf*C-Pa#: obtained on the basis of [1/1] Pagpproximant;
F*Ce: s-expansion result with linear accuracy én f*QSZ: g-expansion result with square
accuracy ine.

f*C,Dir f*C, Pad f*C,s f*C,sz

N

1 0.920 0.162 6.000—210.000
2 0.629 0.158 3.000 —51.000
3 0.500 0.154 2.000 —22.000
4 0424 0.150 1.500 —12.000
5 0.372 0.146 1.200 -7.440
6 0.333 0.143 1.000 -5.000
7 0.304 0.140 0.857 —3.551
8 0.280 0.136 0.750 —-2.625
0.500 7 B
0.300 3wtk Non-resummed function
1 - — — [1/1] Padé-approximant
0.100 ; f
E s AL AL AR
3 0.1 02
-0.100 3 =
-0.300 -
-0.500 3

Figure 2. By-function atd = 3,n = 2.

We conclude from this analysis: in thé = 3 theory the Pa&l approximants (as an
analytical continuation of8-functions) qualitatively may change the picture and lead to
values of the fixed points comparable to those obtained by thé-+Badel resummation
technique.

3.2. Charged fixed point C

Let us now apply the above considerationsgjofor which the expression at = 3 reads
(equation (4)):

Br=—f+ %fz +nfl. (23)

The behaviour of8; as a function off is shown in figure 2 by asterisks. Note, however,
that in this case the functiofi;, even without any resummation, possesses a non-trivial
zero f*M (its value f*P" is given in the second column of table 2). Representing (23) in
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a form of the [1/1] Paé approximant:

4 1+ Bsf
one has forA;, By:
36

Ap=" +6 By =6 (25)
and, solving the equation for the fixed-point coordingt& Pa®:

ﬁ;’adf(f*C.PadE') -0 (26)
one obtains

; 6
f*C,Pade — oy 36 ) (27)

The functiongf2*(f) is shown in figure 2 by the broken curve, the coordinitéa® is
given in the third column of table 2. But now the series (23) is not alternating and this
results in the presence of a pole fat= %) in the approximant (24). Therefore equation (24)
correctly represents the functiggy (f) only for f < % Let us note, however, that for all
positive values of: a fixed point exists and its coordinae™-Fa® |ies within the limits
0 < frCPad % where no pole in (24) exists. Comparing this result with those obtained
in the previous subsection one can conclude that the representatfiprirothe form of the
Pack approximant does not qualitatively change the picture (a solutiofifigf) = O exists
at d = 3 even without an analytical continuation) but results in a decrease of the fixed-
point coordinate. In contrast to theexpansion values (8) there do not exist any border
line values ofn for the positivity of £*C. Unfortunately, we cannot check this result by
means of the Pad-Borel resummation technique: the above-mentioned presence of a pole
in the denominator of the Padipproximant makes the corresponding integral representation
problematic.

In order to find theu-coordinate of the fixed point C4*C, we have to deal with
a function of two variablesg,(u, f), represented by a rather short series (5). One
additional problem arises due to the fact that funct&giu, f) contains generating terms
(i.e. B.(u =0, f) # 0). In order to perform some kind of analytic continuation of a function
of two variables one can use rational approximants of two variables (so-called Canterbury
approximants or generalized Chisholm approximants [34, 35]) being the generalization of
Pace approximants in the case of several variables. But the presence of generating terms
makes this choice rather ambiguous. The most reliable way in such a case seems to be a
representation oB, (u, f) in the form of a ‘resolvent’ serie8 (u, f, t) [35, 36] introducing
an auxiliary variabler, which allows the separation of contributions from different orders
of the perturbation theory in the coupling constant. The serie®far f, r) then reads

Bu, f.1) = Buut, ft) =Y bt/ (28)
j>0

with obvious notation for the coefficients. Now one considers (28) as a series insirgle
variabler. This series can be represented in a form oféPapproximantB®2®(u, f, 1) as
the analytical continuation of the functiaB(u, f, ¢r) for a general value of. In particular,
att = 1 the equality hold88(u, f,r = 1) = B,(u, f) and the approximant

BP(u, f,1 =1) = B{**(u, f)
represents the initial functiofi, (#, f). In our case the expression f8u, f, t) reads

B(u, f,t) = t(by + byt + b3t?) (29)
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where
8
by = —u bzz’“g u? — 6uf + 182
_ 3+14, 2+10,, T+174 , .
3=~y U + 3 u“f + 12 ufc— (fn+90)f°.

Representing the expression in brackets on the right-hand side of (29) in the form of the
[1/1] Pack approximant we have

; 1+ A, st
BP¥(y f1) = thy S 30
(u, f, 1) 11+Bu,_,~t (30)
where
b, b3 —b3
Ay =273 B, j= 2. 31
S o by = (31)

Let us note here that the functioB(u, f,t), as the approximant for the function of
two variablesg, (u, f), obeys certain projection properties in the single-variable case:
substitutingf = 0 or u = 0 into (30) one obtains the [1/1] Padipproximant forBY (u)

or the [0/1] Paé approximant forg,(u = O, f). Finally, the expression fop, (u, f)
approximated in such a way reads

. 1+A
Pads u, f
8 L f)=b el 32
u (l/l f) 1 1 Bu,f ( )

Substituting into the equation for the fixed poiff(u*°, f*©) = 0 the value for the
coordinatef*¢ = f*C.Pa® (gquation (27)) one obtains the non-linear equationufér"a®:

BPa®(u, f = fr<Pa%) = 0. (33)

Solving equation (33) with respect o one obtains the values©P2® given in table 3.
The intersection of the functio®(u, f) (equation (32)), with the plang = f*CPa¢

is shown forn = 2 in figure 3. The first fixed point (C1) given in the second column of
table 3 turns out to be unstable, while the fixed point C2 is stable also for the:cas2
we are mainly interested in.

Table 3. Fixed-point C coordinates*C-Pa® obtained on the basis of the [1/1] Radpproximant
for the ‘resolvent’ series as a function @f C1: unstable fixed point; C2: stable fixed point.

M*C,Pada’

n C1l Cc2

1 0.184 3.309
2 0181 2457
3 0179 1.781
4 0177 1.150
5 0175 0.473
6 0.175 0.369
7 0176 0.305
8 0.179 0.256
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0.5 1

u

0.0 P rr ey

1.0 2.0 3.0

1.0 1

Figure 3. Intersection of the functiogF2®(u, f) atd = 3, n = 2 with the planef = f*C.Fa®
in the two-loop approximation.

3.3. Flows

The crossover to the asymptotic critical behaviour is described by the solutions of the flow
equations (2), (3) with initial values(£g) and f(£p) at £ = £of. Substituting for thes-
functions entering the right-hand side of (2), (3) their analytical continuation in the form of
the Paé@ approximants (24), (32) we get the following system of differential equations:

dl _ f—1+ Aff
d 7 1+Bf
du 1+ Au’f

) (34)

du _ 35
d - “1+B,, (39)

whereAy, By and A, ¢, B,  are given by (25) and (31) correspondingly.

Solving equations (34), (35) numerically one gets the flow diagram shown in figure 4 for
the casen = 2. The space of couplings is divided into several parts by separatrices (thick
curves in figure 4) connecting the fixed points. Besides the Gaussian (G) there exist three
fixed points, one corresponding to the uncharged (U) and two others corresponding to the
charged (C1, C2) cases. The fixed points G, C1 and U are unstable (full circles in figure 4)
and the fixed point C2 is the stable one (shown as a full square in figure 4). Several different
flow lines are shown in figure 4. They can be compared with the corresponding flow picture
obtained by a direct solution of the flow equations for the two-Igefunctions expressed
by the third-order polynomials in the couplings f (equations (4), (5)) (see figure&(
in [9]). There one can see that no stable fixed point existed and even the fixed point U
was absent. Comparing figure 4 and figure)2ifom [9] one can see how an analytical
continuation of theB-functions (4), (5), done only partly in [9] and performed here in the
form of Pa@ approximants, restores the presence of the fixed point U (unstable) and leads
to the appearance of a new stable fixed point C2 for the charged model. The coordinates
of the fixed points U, C1, C2 are given in the corresponding columns of tables 1-3 and for

T We takefp = 1.
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T T T T T L
7 C2
-
015 - 1 -
3
0.10 | ~
f
005 |- =
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0.00
1 $ 1
05 05 1.0 25
u

Figure 4. Flow lines for the case: = 2, d = 3 given by equations (4), (5) (for further
description see the text).

n = 2 take the values:
U: u* =1500 f*=0
Cl: u*=0.181 f*=0.158
C2: u* = 2457 f*=0.158.

4. Critical exponents

4.1. Asymptotic values

The values of critical exponents are determined by the values af-fbections at the fixed
point; the expressions for thefunctions related to the order parameter and the temperature
field renormalization in the two-loop approximation read [9]:

_ n+2 , An+18 ,

Cy =-3f + 75 uc+ 7 f (36)
_—(n+2 (n+2) 2_2(n+2) _(5Vl+1) 2

;= 5 u+ 1 u 3 uf 5 fe. (37)

If there exists a stable fixed point, the critical exponendf the correlation length, the
critical exponenty of the order parameter susceptibility and the critical exponeat the
specific heat are given by

v=@2-¢Ht (38)
y=Q2-¢H)2-1¢)) (39)
a=2-¢HHe—2) (40)

where¢, = ¢y — . From the analysis given above it follows that the charged fixed point
C2 is the stable one and this results in values for the exponents (38)—(40) different from
the values of the uncharged fixed point U, i.e. they are not given b§Heevalues as it is
sometimes stated (see e.g. [1, 3, 7]). Trying to obtain their numerical values on the basis of
the values of fixed point C2 coordinatgg®Pa®¥, ;,*C2Pa® given in tables 1 and 2 in order
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to be self-consistent let us perform the same type of analytical continuation for the series for
¢-functions, as those which have been applied togHenctions (4), (5). So introducing

the auxiliary variable let us represent functions (38)—(40) in the form of resolvent series
in # and then we will chose the [1/1] Padipproximants for these series, whichr at 1

will give us the analytical continuation of the series requested. The expression obtained in
such a way for a critical exponet (¢ = {v, y, «)} reads

1+ A
0 ¢
= _ 41
¢ =a, 1+ B, (41)
The expressions for the coefficieds, B, in (41) read

Ay =ay’ + By By = —ay /af’ (42)

andaj’ are to be determined from the resolvent series: in

¢p=> agt'-. (43)
i>0
Substituting (36) and (37) into (38)—(40) and representing (38)—(40) in the form of (43) one
finds:

o =1
al® =[(n+2)/12lu—3f (44)
al? = [(n® — n — 6)/144}* + [(T1n + 138 /48] £ + [(n + 2)/12]uf
a)(,o) =1
al’ =[(n+2)/12lu (45)
a? =[(n? — 2n — 8)/144W% + [(5n + 1) /4] f2 + [5(n + 2) /24]u
y =1 /144" + | /AL + /24]uf
aéo) =1
a’ = —[3n+2)/12u + 3 f (46)
a® =[(—3n? + 3n + 18)/144}? — [(71n 4 138 /16]f% — [(n + 2)/4uf .
. = )/144)° — [( 8/16]f° — [(n + 2)/4Juf
Considering the case = 2 and substituting the coordinates of the fixed point C2

(f*CPa¢ — 0.158), u*C2Pa® — 2457 (see tables 1 and 2) into (44)—(46) one obtains
for the critical exponents (38)—(40):

»=0857 y=1880 a=-1141. (47)

The application of the P&dapproximants for the analytical continuation of the functions
may result in the appearance of poles in these functions. If the pole is located in a
region of expansion parameters which is unphysical (e.g. negative couplorgy) this
does not complicate the analysis. This was the case fogthections in the region of
couplings less than the fixed-point values. For th&unctions, however, considering the
non-asymptotic behaviour (and thus being far from the stable fixed point) one passes through
a region of couplings where the Radpproximation for the-functions becomes ambiguous
resulting in the appearance of a pole. Therefore studying the crossover behaviour in the
next subsection we will still keep the polynomial representation;ffunctions instead of
the Pa@ approximants. Then for the asymptotic values of critical exponents one finds

v=0771 y=1619 a=-0314 (48)

Comparing the values of (47) and (48) shows a numerical difference of 15%aimd y
and a considerable increasedn However, there is no qualitative change (e.g. the sign of
the specific heat exponent remains the same).
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Figure 5. Effective exponent for the flows shown in figure 4 (for further description see the
text).

4.2. Effective exponents and crossover

Effective exponents are usually defined by the logarithmic temperature derivatives of the
corresponding correlation functions (see e.g. [37]). These can be found from the solutions
of the renormalization-group equation for the renormalized vertex functions. These effective
exponents contain two contributions, one from the corresponghfugnctions now taken at

the values:(¢), f(£) of the flow curve considered (‘exponent part’), and one from the change
of the corresponding scaling function (‘amplitude part’). The latter contributions will be
neglected since we expect them to be smaller than the differences for the fixed point values
of the exponents coming from the different treatments discussed before. Thus we have

v=02-50)" (49)
y=Q2-6©) 2=ty 0) (50)
a=(2-0)) e —2¢,(0). (51)

The flow parametet can be related to the relative temperature distand try the match-
ing conditionz (¢) = (50‘16)2, with & the amplitude of the correlation length.

We have computed these effective exponents, see figures 5-7, along the flow lines shown
in figure 4 by inserting the couplings(¢) and f(¢) into (49)—(51). For the separatrix 1
we started with initial conditions leading to a flow, which did not stick in the fixed point C1
but slightly missed it, although the flow curve did not differ from the separatrix within the
thickness of the lines shown in figure 4. For curve number 4 we started somewhat further
away from the Gaussian fixed point G, leading to initial values of the effective exponents
between their Gaussian values and their values for the uncharged fixed point U. Note that
the values of the effective exponenfor the uncharged fixed point U and the charged fixed
point C1 are the same within the accuracy given by the scale of the figure.

1 In fact, we have solved the flow equations (34), (35) starting near the unstable fixed points, for the initial value
of the flow parameter we took = 1. Using different initial valuesi{(1) and f(1) on the separatrix) would
amount to rescaling the flow parameter.
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Figure 6. Effective exponeny for the flows shown in figure 4 (for further description see the
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Figure 7. Effective exponentr for the flows shown in figure 4 (for further description see the
text).

5. Conclusion

In the present paper we have re-examined expressions for the renormalization-group
functions of the field-theoretical gauge model for a superconductor obtained previously
in the two-loop approximation [9]. The main point which is discussed in this context is
whether the equations fg-functions possess a stable fixed point or not. The absence of a
stable fixed point is often interpreted as a change of the order of the phase transition (caused
by the presence of magnetic field fluctuations) and evidence of the fluctuation-induced first-
order phase transition. However, this change of the order of the phase transition (being
of second order in the absence of a coupling to the gauge field) is confirmed only by
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perturbation theory calculations in low orders ([2], see [9] and references therein as well).
By this paper we want to attract attention to the following problems:

(i) the series for the renormalization-group functions are not convergent and, generally
speaking, it is desirable to first prove their asymptotic nature (as it is proven in the pure
model case);

(i) in the case where the series in the renormalized coupling constants are asymptotic
and have zero radius of convergence, one should perform appropriate analytical continuation
of these series in order to obtain reliable information on their basis.

In this paper we applied a simple Fadnalysis to the series under discusgiom the
case of one coupling such an approach gives a qualitatively correct picture of the phase
transition and restores the presence of a stable fixed point ([31], see formulae (16), (20)
of this paper). The same situation happens here in the case of two couplings= &
‘uncharged’ fixed point U (having coordinatggV-Fa® — 0,158, *Y-Pa® — 2 457) appears
to be stable, which leads to a new set of critical exponents. Of course, being calculated
only in the two-loop approximation with application of Fadnalysis, these values for the
critical exponents are to be considered as preliminary ones. The main point we claim here
is that in the frames of the renormalization-group analysis for the superconductor model
there still exists the possibility of a second-order phase transition characterized by a set of
critical exponents differing from those 6He.

Recently, the critical exponeni has been calculated in a self-consistent screening
approximation [12] and a value of = —0.38 was found. This may be compared with
the values obtained for the charged fixed point C2 in our calculations using the asymptotic
scaling lawn = 2 — y/v. From the values fo andv of (47) we findyp = —0.19 and
from (48) we findn = —0.1, respectively. These values fgrare well within the physical
rangen > —1 atd = 3.
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