
On the critical fluctuations in superconductors

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1996 J. Phys. A: Math. Gen. 29 3409

(http://iopscience.iop.org/0305-4470/29/13/014)

Download details:

IP Address: 171.66.16.70

The article was downloaded on 02/06/2010 at 03:55

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/29/13
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen.29 (1996) 3409–3425. Printed in the UK

On the critical fluctuations in superconductors

R Folk† and Yu Holovatch‡
† Institute for Theoretical Physics, Johannes Kepler University Linz, A-4040 Linz, Austria
‡ Institute for Condensed Matter Physics of the Ukrainian Academy Sciences, UA-290011 Lviv,
Ukraine

Received 4 December 1995, in final form 13 March 1996

Abstract. The field-theoretical gauge model for a superconductor, generalized to ann/2-
component complex order parameter is considered. The question of the order of the phase
transition occurring in this model is discussed. Previous renormalization-group calculations
suggest that in such a model a fluctuation-induced first-order phase transition occurs. We re-
examine previously obtained expressions for the renormalization-group functions in the two-
loop approximation in three dimensions. Special attention is being paid to the fact that the
corresponding series might be the asymptotic ones and therefore have zero radius of convergence.
We discuss the possible ways of analytical continuation of the series obtained. Comparing
results obtained by ‘direct’ calculations with those obtained by Padé analysis and the Padé–
Borel resummation technique, the conjecture is made that in the model under consideration
there still exists a possibility for a second-order phase transition.

1. Introduction

The smallness of the correlation lengthξ0 in high-Tc superconductors leads to an increase
of the temperature region nearTc where fluctuation effects [1] might be observed. The
general belief in this field is that the phase transition is weakly of first order [2] (for another
model see [3]). This fluctuation-induced first-order transition could only be seen within
such a small temperature region roundTc that it is unobservable in experiment. In low-Tc

superconductors with a large correlation length,ξ0 mean-field behaviour is observed, since
fluctuations are relevant only unobservable nearTc as the Ginzburg criterion states. Support
for this picture has been given in liquid crystals, where the same picture applies [4].

In high-Tc superconductors in several experiments critical effects have been observed
in the specific heat [5, 6]. They have been analysed with scaling exponents related to the
fixed point in the uncharged model [7]. In the presence of a magnetic field, where some of
the experiments have been performed, the situation is more complicated, however, and the
question of the order of the transition remains [8].

The theoretical model which is used to describe the relevant critical behaviour is the
usual φ4-model coupled to a gauge field [2]. The minimal coupling to the gauge field
makes the model (i) different from the model describing the superfluid transition in4He
and (ii) leads, as is the general belief, to a first-order transition instead of a continuous
transition as in the uncharged system of4He. The arguments for a first-order transition in
this model are based on a runaway solution instead of a fixed point in the space of the static
parameters found inone-loop order. In [9] we calculated the two-loop flow equations for
the static parameters and indicated that a stable fixed point might be possible, consequently
a second-order transition would appear.
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An attractive feature of the flow found in [9] was that it discriminated between type-I and
type-II superconductors, depending on the initial (background) values of the couplings. For
small values of the ratio (coupling to the gauge field)/(fourth-order coupling) (appropriate
for type-II superconductors) the flow comes very near to the fixed point of the uncharged
model but ends in the new superconducting fixed point. For large values of the ratio (type-
I superconductors) the flow runs away. For values of the ratio in between, the critical
behaviour might be influenced by a second (unstable) superconducting fixed point with
scaling exponents quite different from the uncharged model.

Monte Carlo simulations of the three-dimensional lattice superconductor model [10, 11]
indicate a second-order phase transition moving from the type-I superconductor region to
the type-II superconductor regime, although the possibility always exists of a very small
first-order transition in the type-II region. More recently, from a self-consistent theory of the
normal-to-superconductor transition it was concluded that the first-order transition might be
an artefact of the breakdown of theε-expansion and a non-trivial critical point was predicted
[12].

In this paper we therefore reconsider the two-loop equations and the resulting flow and
calculate effective exponents, given by the zeta function, which have also been calculated
in two-loop order in [9]. The main point here is that we take account of the fact that the
loop expansion is only an asymptotic one. We apply resummation techniques to the beta
functions of the flow as well as to the zeta functions. In this way we find several fixed
points with new scaling exponents and a rich crossover behaviour.

The structure of this paper is as follows. In section 2 we describe the model we
are interested in, give the expressions for the renormalization-group functions in the two-
loop approximation and describe the results obtained on their basis without applying a
resummation procedure. Section 3 is devoted to the study of theβ-functions which are
the functions of two variables and corresponding flows on the base of the Padé–Borel
resummation technique and Padé approximants for the appropriate resolvent series. In
section 4 we calculate the asymptotic and effective values for the critical exponents. The
results are discussed in section 5.

2. General considerations

2.1. The model

Starting from the Landau–Ginsburg free-energy functionalF(9,A) for a generalized
superconductor ind dimensions with the vector potentialA and the order parameter9
consisting ofn/2 complex components one can describe the fluctuation effects by an Abelian
Higgs model with the gauge-invariant Hamiltonian [2]:

H =
∫

ddx

{
1

2
t0|90|2 + 1

2
|(∇ − ie0A0)90|2 + u0

4!
|90|4 + 1

2
(∇ × A0)

2

}
(1)

depending on the bare parameterst0, e0, u0. The parametert0 changes its sign at some
temperature, the rest of the parameters being considered as temperature-independent. For
the coupling constante0 = 0 no magnetic fluctuations are induced and the model reduces to
the usual field theory describing a second-order phase transition and corresponding to the
particular casen = 2 to the superfluid transition in4He.

Recent two-loop results [9] for the renormalization-group functions corresponding to (1)
were obtained on the basis of dimensional regularization and minimal subtraction scheme
[13] (for calculations atd = 3 see [14, 15]). The flow equations for the renormalized
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couplingsu, f (f = e2) are

l
df

dl
= βf (2)

l
du

dl
= βu (3)

where l is the flow parameter and the expressions forβ-functions in the two-loop
approximation read [9]

βf = −εf + n

6
f 2 + nf 3 (4)

βu = −εu+ n+ 8

6
u2 − 3n+ 14

12
u3 − 6uf + 18f 2 + 2n+ 10

3
u2f

+71n+ 174

12
uf 2 − (7n+ 90)f 3 (5)

with ε = 4−d. The previous analysis of the equations of type (4) and (5) either in one-loop
[2] or in two-loop order [9] was based on a direct solution of the equation for the fixed
point. In the present study we want to attract attention to the fact that the series have zero
radius of convergence and that they are known to be asymptotic at best. Therefore some
additional mathematical methods have to be applied in order to obtain reliable information
on their basis. In fact, the asymptotic nature of the series for the renormalization-group
functions has been proved only in the case of theφ4 model containing one coupling of
O(n)-symmetry (n-vector model) where the high-order asymptotics for these series is known
[16–18] in analytical form. These results gave the possibility of obtaining precise values of
the critical exponents for then-vector model by resummation of the corresponding series for
the renormalization-group functions (see e.g. [14, 19, 20]). For the ‘charged’ model we are
considering here there is, to our knowledge, no available information similar to that obtained
in [16–18] for the ‘uncharged’ case (f = 0). Nevertheless, in the case of a model containing
several couplings of different symmetry the asymptotic nature of the corresponding series for
the renormalization-group functions is rather a general belief than a proven fact. As one such
example we mention here the weakly dilutedn-vector model, described by a Hamiltonian
containing two fourth-order terms of different symmetry [21]. The asymptotic nature of
the double series for the renormalization-group functions in terms of the coupling constants
has not been proven for this model up to now†. However, an appropriate resummation
technique (appliedas if these series are the asymptotic ones) enables one to obtain accurate
values for critical exponents in three dimensions [22–25] and to describe (in then = 1 case)
the experimentally observed crossover to a new type of critical behaviour caused by weak
dilution [26, 27]. These results are also confirmed by Monte Carlo [28, 29] and Monte Carlo
renormalization-group [30] calculations. We therefore do not hesitate to use these methods
in our case.

2.2. ε-expansion results

Keeping all the above-mentioned problems in mind, let us have a closer look at the series (4)
and (5). We start by recalling results of aε2-expansion for theβ-functions [2, 9]. In second
order in ε one obtains three fixed points: the Gaussian (u∗G = f ∗G = 0), the ‘uncharged’
(u∗U 6= 0, f ∗U = 0) and the ‘charged’ (u∗C 6= 0, f ∗C 6= 0), to be denoted as G, U, C. The

† Only for the case when one of the couplings is equal to zero does one obtain a series which is proved to be the
asymptotic one.
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expressions for them read

G : u∗G = 0 f ∗G = 0 (6)

U : u∗U = uU1 ε + uU2 ε
2 f ∗U = 0 (7)

C : u∗C = uC1 ε + uC2 ε
2 f ∗C = f C1 ε + f C2 ε

2 (8)

where

uU1 = 6

n+ 8
uU2 = 18(3n+ 14)

(n+ 8)3

uC1 = 3(n+ 36)+ (n2 − 360n− 2160)1/2

3n(n+ 8)
uC2 = a2

a1

f C1 = 6

n
f C2 = −

(
6

n

)3

n

a1 = 1 + n+ 8

3
uC1 − 36

n

a2 = 3n+ 14

12

(
uC1

)3 − 6nuC1

(
6

n

)3

+ 36n

(
6

n

)4

− (n+ 5)4

n
(uC1 )

3

−3(71n+ 174)

n2
uC1 +

(
6

n

)3

(7n+ 90) .

Almost all physical results concerning the phase transition described by the field theory
(1) were based on the information given by (6)–(8). The main ones read:

(i) the fixed point U is unstable in thef -direction atd < 4 with the stability exponent

λf (u = u∗U, f = f ∗U = 0) = ∂βf

∂f

∣∣∣∣
U

= −ε ;

(ii) the fixed point C appears to be complex forn < nc = 365.9 [2] already in one-loop
order. The stability exponent given by

λu(u = u∗C, f = f ∗C) = ∂βu

∂u

∣∣∣∣
C

and in the two-loop order reads

λu = −εs s =
[(

1 + 36

n

)2

− 432(n+ 8)

n2

]1/2

leading to an oscillatory flow inu in one-loop order belownc with the solution [9, 37]:

f (l) = 6f l−ε

6 + nεf (l−ε − 1)
(9)

u(l) = f (l)
n

2(n+ 8)

{
s tan

[
s

2
ln(f (l)f −1lε)

+ arctan

(
2(n+ 8)

sn

u

f
+ n+ 36

ns

) ]
− n+ 36

n

}
(10)

wheref andu are the initial parameters atl = 1;
(iii) from the condition of positiveness of the fixed-point coordinatef ∗ (f = e2) it

follows that atε = 1 n > 36.
Finally, one concludes that for the ‘superconductor’ casen = 2 of most physical interest

no stable fixed point exists and therefore the observed phase transition is of first order.
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2.3. Resummation

Nevertheless, one should note that such a straightforward interpretation of theε-expansion
data is questionable and a method of analysis of the series forβ-functions (4), (5) avoiding
strict ε-expansion and exploiting information about the accurate solution for the pure model
case atd = 3 was proposed [9]. Also from the comparison ofε-expansion values forf ∗

(giving a positive value off ∗ only for n > 36) with the value off ∗ obtained without
ε-expansion (remaining positive for alln) the conjecture was made that the lower boundary
for n resulting in a negativef ∗ might be an artefact of the expansion procedure.

As is well known nowadays the appropriate resummation technique applied in the theory
of critical phenomena to the asymptotic series for the renormalization-group functions
enables one to obtain extremely accurate values of the critical exponents. Two main
ways of resummation are commonly used: (i) resummation based on the conformal
mapping technique and (ii) Padé–Borel resummation. Case (i) is based on the conformal
transformation, which maps a part of the domain of analyticity containing the real-positive
axis onto a circle centred at the origin and the asymptotic expansion for a certain function
is thus re-written in the form of a new series (see [20] for a discussion). However, this
resummation is based on the knowledge of subtle details of the asymptotics (location of
the pole, high-order behaviour) which are not available in our case. In the absence of any
knowledge about the singularities of the series the most appropriate method which can be
used to perform the analytical continuation is the Padé approximation resulting in Padé–
Borel resummation techniques (ii) (see e.g. [19]). In the following we are going to apply
this method to the special case off = 0, so let us concentrate on it in detail.

Starting from the Taylor series for the functionf (u):

f (u) =
∑
j>0

cju
j (11)

one constructs the Borel transform

F(ut) =
∑
j>0

cj

j !
(ut)j . (12)

Then one represents (12) in the form of the Padé approximantFPadé(ut) (in the subsequent
analysis, proceeding in the two-loop approximation we will use the [1/1] Padé approximant)
and the resummed function is given by

f Res(u) =
∫ ∞

0
dt e−tFPadé(ut) . (13)

However, the technique described above, generally speaking, could be applied only to an
alternating series like

f (u) =
∑
j>0

(−1)j cju
j cj > 0 . (14)

The problem is that fractions of the typecj /cj+1 enter the denominator of the Padé
approximant and a pole in the integral representation of the resummed function could appear
if the series is not an alternating one†. In the next section we will show how this procedure
works in the case when only one coupling,u, is present.

† In this case the principal value of the integral (13) could be taken, but generally speaking it is preferable to
avoid such situations (see also [19]).
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3. Fixed points and flows in three dimensions

We will proceed here by considering the flow equations (2) and (3) directly atd = 3. Let us
look for the solutions of the fixed point equations atd = 3 paying attention to the possible
asymptotic nature of the corresponding series (4) and (5).

3.1. The uncharged fixed point U

Substituting the valuef ∗ = 0 into (5) one obtains the following expression for the function
βU
u ≡ βu(u, f

∗ = 0):

βU
u = −u+ n+ 8

6
u2 − 3n+ 14

12
u3 . (15)

Solving this polynomial for the fixed point one obtains for the non-trivialu∗ > 0:

u∗U = n+ 8

3n+ 14
+

√
n2 − 20n− 104

3n+ 14
(16)

Figure 1. βu-function of the uncharged modelβU
u at d = 3, n = 2.

and immediately the ‘condition of existence of non-trivial solutionu∗U’ follows qualitatively,
very similar to those appearing in the strictε-expansion technique (see [2, 9] and (7) of the
present paper as well): the solution exists only for certain values ofn > nc = 24.3! From
figure 1 one can see that the functionβU

u (equation (15)) does not intersect theu-axis at any
non-zero value ofu for n = 2. In theO(n)-symmetricφ4-theory atd = 3 this situation is
well known (see e.g. [31, 32]): theβ-function calculated directly atd = 3 does not possess
a stable zero for realistic values ofn, nevertheless, in three-loop order the presence of the
stable fixed point is restored. To avoid this artefact appearing in the two-loop calculation one
can either resum the series for theβ-function or construct the appropriate Padé approximant†
in order to perform the analytical continuation of (15) out of the domain of convergence

† The last possibility was chosen by Parisi [31] in order to restore the presence of a stable solution for the fixed
point in the two-loop approximation.
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(which is equal to zero for the series in the right-hand side of (15). Let us try both ways.
Representing (15) in the form of the [1/1] Padé approximant:

βU,Padé
u = u

−1 + Auu

1 + Buu
(17)

one obtains

Au = n2 + 7n+ 22

6(n+ 8)
Bu = 3n+ 14

2(n+ 8)
(18)

and, solving the equation for the fixed point

βU,Padé
u (u∗P,Padé) = 0 (19)

one obtains

u∗U,Padé = 6(n+ 8)

n2 + 7n+ 22
. (20)

So we obtained a qualitatively different situation. The behaviour ofβU,Padé
u (u) for n = 2

is shown in figure 1 by the broken curve. If one is interested in more accurate values of
u∗ some resummation has to be applied. Choosing the Padé–Borel resummation technique†
and following the scheme (11)–(13) one obtains for the resummed functionβU,Res

u :

βU,Res
u = u

[
2(1 − Au/Bu)

(
1 − E

(
2

uBu

))
− 1

]
(21)

the coefficientsAu, Bu are given by (18),E(x) = xexE1(x), where the function

E1(x) = e−x
∫ ∞

0
dt e−t (x + t)−1

is connected with the exponential integral by the relation [33]:

E1(x ± i0) = −Ei(−x)∓ iπ .

The behaviour of the functionβU,Res
u (u) is shown in figure 1 by the full curve. And the

fixed point coordinateu∗U,Res is obtained by solving the non-linear equation

βU,Res
u (u∗U,Res) = 0 . (22)

Coordinates of the fixed pointu∗U obtained on the basis of the Padé approximation and
Pad́e–Borel resummation (u∗U,Padé, u∗U,Res) for differentn are given in table 1.

Table 1. Fixed-point U coordinateu∗U as a function ofn. u∗U,Padé: obtained on the basis of
the [1/1] Pad́e approximant;u∗U,Res: obtained by Pad́e–Borel resummation.

n u∗U,Padé u∗U,Res

1 1.800 1.315
2 1.500 1.142
3 1.269 1.002
4 1.091 0.888
5 0.951 0.794
6 0.840 0.717
7 0.750 0.652
8 0.676 0.597

† The series in (15) appears to be an alternating one and this scheme can be applied without any difficulties.
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Table 2. Fixed-point C coordinatef ∗C as a function ofn. f ∗C,Dir : obtained by direct solution
of the equation for the fixed point;f ∗C,Padé: obtained on the basis of [1/1] Padé approximant;
f ∗C,ε : ε-expansion result with linear accuracy inε; f ∗C,ε2

: ε-expansion result with square
accuracy inε.

n f ∗C,Dir f ∗C,Padé f ∗C,ε f ∗C,ε2

1 0.920 0.162 6.000−210.000
2 0.629 0.158 3.000 −51.000
3 0.500 0.154 2.000 −22.000
4 0.424 0.150 1.500 −12.000
5 0.372 0.146 1.200 −7.440
6 0.333 0.143 1.000 −5.000
7 0.304 0.140 0.857 −3.551
8 0.280 0.136 0.750 −2.625

Figure 2. βf -function atd = 3, n = 2.

We conclude from this analysis: in thed = 3 theory the Pad́e approximants (as an
analytical continuation ofβ-functions) qualitatively may change the picture and lead to
values of the fixed points comparable to those obtained by the Padé–Borel resummation
technique.

3.2. Charged fixed point C

Let us now apply the above considerations toβf for which the expression atd = 3 reads
(equation (4)):

βf = −f + n

6
f 2 + nf 3 . (23)

The behaviour ofβf as a function off is shown in figure 2 by asterisks. Note, however,
that in this case the functionβf , even without any resummation, possesses a non-trivial
zerof ∗M (its valuef ∗C,Dir is given in the second column of table 2). Representing (23) in
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a form of the [1/1] Pad́e approximant:

βPadé
f = f

−1 + Af f

1 + Bf f
(24)

one has forAf , Bf :

Af = n+ 36

6
Bf = −6 (25)

and, solving the equation for the fixed-point coordinatef ∗C,Padé:

βPadé
f (f ∗C,Padé) = 0 (26)

one obtains

f ∗C,Padé = 6

n+ 36
. (27)

The functionβPadé
f (f ) is shown in figure 2 by the broken curve, the coordinatef ∗C,Padé is

given in the third column of table 2. But now the series (23) is not alternating and this
results in the presence of a pole (atf = 1

6) in the approximant (24). Therefore equation (24)
correctly represents the functionβf (f ) only for f < 1

6. Let us note, however, that for all
positive values ofn a fixed point exists and its coordinatef ∗M,Padé lies within the limits
0 < f ∗C,Padé < 1

6, where no pole in (24) exists. Comparing this result with those obtained
in the previous subsection one can conclude that the representation ofβf in the form of the
Pad́e approximant does not qualitatively change the picture (a solution forβf (f ) = 0 exists
at d = 3 even without an analytical continuation) but results in a decrease of the fixed-
point coordinate. In contrast to theε-expansion values (8) there do not exist any border
line values ofn for the positivity of f ∗C. Unfortunately, we cannot check this result by
means of the Padé–Borel resummation technique: the above-mentioned presence of a pole
in the denominator of the Padé approximant makes the corresponding integral representation
problematic.

In order to find theu-coordinate of the fixed point C,u∗C, we have to deal with
a function of two variables,βu(u, f ), represented by a rather short series (5). One
additional problem arises due to the fact that functionβu(u, f ) contains generating terms
(i.e.βu(u = 0, f ) 6= 0). In order to perform some kind of analytic continuation of a function
of two variables one can use rational approximants of two variables (so-called Canterbury
approximants or generalized Chisholm approximants [34, 35]) being the generalization of
Pad́e approximants in the case of several variables. But the presence of generating terms
makes this choice rather ambiguous. The most reliable way in such a case seems to be a
representation ofβu(u, f ) in the form of a ‘resolvent’ seriesB(u, f, t) [35, 36] introducing
an auxiliary variablet , which allows the separation of contributions from different orders
of the perturbation theory in the coupling constant. The series forB(u, f, t) then reads

B(u, f, t) ≡ βu(ut, f t) =
∑
j>0

bj t
j (28)

with obvious notation for the coefficientsbj . Now one considers (28) as a series in thesingle
variablet . This series can be represented in a form of Padé approximantBPadé(u, f, t) as
the analytical continuation of the functionB(u, f, t) for a general value oft . In particular,
at t = 1 the equality holdsB(u, f, t = 1) = βu(u, f ) and the approximant

BPadé(u, f, t = 1) ≡ βPadé
u (u, f )

represents the initial functionβu(u, f ). In our case the expression forB(u, f, t) reads

B(u, f, t) = t (b1 + b2t + b3t
2) (29)
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where

b1 = −u b2 = n+ 8

6
u2 − 6uf + 18f 2

b3 = −3n+ 14

12
u3 + 2n+ 10

3
u2f + 71n+ 174

12
uf 2 − (7n+ 90)f 3 .

Representing the expression in brackets on the right-hand side of (29) in the form of the
[1/1] Pad́e approximant we have

BPadé(u, f, t) = tb1
1 + Au,f t

1 + Bu,f t
(30)

where

Au,f = b2

b1
− b3

b2
Bu,f = −b3

b2
. (31)

Let us note here that the functionB(u, f, t), as the approximant for the function of
two variablesβu(u, f ), obeys certain projection properties in the single-variable case:
substitutingf = 0 or u = 0 into (30) one obtains the [1/1] Padé approximant forβU

u (u)

or the [0/1] Pad́e approximant forβu(u = 0, f ). Finally, the expression forβu(u, f )
approximated in such a way reads

βPadé
u (u, f ) = b1

1 + Au,f

1 + Bu,f
. (32)

Substituting into the equation for the fixed pointβu(u∗C, f ∗C) = 0 the value for the
coordinatef ∗C = f ∗C,Padé (equation (27)) one obtains the non-linear equation foru∗C,Padé:

βPadé
u (u, f = f ∗C,Padé) = 0 . (33)

Solving equation (33) with respect tou one obtains the valuesu∗C,Padé given in table 3.
The intersection of the functionβPadé

u (u, f ) (equation (32)), with the planef = f ∗C,Padé

is shown forn = 2 in figure 3. The first fixed point (C1) given in the second column of
table 3 turns out to be unstable, while the fixed point C2 is stable also for the casen = 2
we are mainly interested in.

Table 3. Fixed-point C coordinatesu∗C,Padé obtained on the basis of the [1/1] Padé approximant
for the ‘resolvent’ series as a function ofn. C1: unstable fixed point; C2: stable fixed point.

u∗C,Padé

n C1 C2

1 0.184 3.309
2 0.181 2.457
3 0.179 1.781
4 0.177 1.150
5 0.175 0.473
6 0.175 0.369
7 0.176 0.305
8 0.179 0.256
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Figure 3. Intersection of the functionβPadé
u (u, f ) at d = 3, n = 2 with the planef = f ∗C,Padé

in the two-loop approximation.

3.3. Flows

The crossover to the asymptotic critical behaviour is described by the solutions of the flow
equations (2), (3) with initial valuesu(`0) and f (`0) at ` = `0†. Substituting for theβ-
functions entering the right-hand side of (2), (3) their analytical continuation in the form of
the Pad́e approximants (24), (32) we get the following system of differential equations:

l
df

dl
= f

−1 + Af f

1 + Bf f
(34)

l
du

dl
= −u1 + Au,f

1 + Bu,f
(35)

whereAf , Bf andAu,f , Bu,f are given by (25) and (31) correspondingly.
Solving equations (34), (35) numerically one gets the flow diagram shown in figure 4 for

the casen = 2. The space of couplings is divided into several parts by separatrices (thick
curves in figure 4) connecting the fixed points. Besides the Gaussian (G) there exist three
fixed points, one corresponding to the uncharged (U) and two others corresponding to the
charged (C1, C2) cases. The fixed points G, C1 and U are unstable (full circles in figure 4)
and the fixed point C2 is the stable one (shown as a full square in figure 4). Several different
flow lines are shown in figure 4. They can be compared with the corresponding flow picture
obtained by a direct solution of the flow equations for the two-loopβ-functions expressed
by the third-order polynomials in the couplingsu, f (equations (4), (5)) (see figure 2(a)
in [9]). There one can see that no stable fixed point existed and even the fixed point U
was absent. Comparing figure 4 and figure 2(b) from [9] one can see how an analytical
continuation of theβ-functions (4), (5), done only partly in [9] and performed here in the
form of Pad́e approximants, restores the presence of the fixed point U (unstable) and leads
to the appearance of a new stable fixed point C2 for the charged model. The coordinates
of the fixed points U, C1, C2 are given in the corresponding columns of tables 1–3 and for

† We take`0 = 1.
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Figure 4. Flow lines for the casen = 2, d = 3 given by equations (4), (5) (for further
description see the text).

n = 2 take the values:

U : u∗ = 1.500 f ∗ = 0

C1 : u∗ = 0.181 f ∗ = 0.158

C2 : u∗ = 2.457 f ∗ = 0.158.

4. Critical exponents

4.1. Asymptotic values

The values of critical exponents are determined by the values of theζ -functions at the fixed
point; the expressions for theζ -functions related to the order parameter and the temperature
field renormalization in the two-loop approximation read [9]:

ζψ = −3f + (n+ 2)

72
u2 + (11n+ 18)

24
f 2 (36)

ζt = −(n+ 2)

6
u+ (n+ 2)

12
u2 − 2(n+ 2)

3
uf − (5n+ 1)

2
f 2. (37)

If there exists a stable fixed point, the critical exponentν of the correlation length, the
critical exponentγ of the order parameter susceptibility and the critical exponentα of the
specific heat are given by

ν = (2 − ζ ∗
ν )

−1 (38)

γ = (2 − ζ ∗
ν )

−1(2 − ζ ∗
ψ) (39)

α = (2 − ζ ∗
ν )

−1(ε − 2ζ ∗
ν ) (40)

whereζν = ζψ − ζt . From the analysis given above it follows that the charged fixed point
C2 is the stable one and this results in values for the exponents (38)–(40) different from
the values of the uncharged fixed point U, i.e. they are not given by the4He values as it is
sometimes stated (see e.g. [1, 3, 7]). Trying to obtain their numerical values on the basis of
the values of fixed point C2 coordinatesf ∗C,Padé, u∗C2,Padé given in tables 1 and 2 in order
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to be self-consistent let us perform the same type of analytical continuation for the series for
ζ -functions, as those which have been applied to theβ-functions (4), (5). So introducing
the auxiliary variablet let us represent functions (38)–(40) in the form of resolvent series
in t and then we will chose the [1/1] Padé approximants for these series, which att = 1
will give us the analytical continuation of the series requested. The expression obtained in
such a way for a critical exponentφ (φ ≡ {ν, γ, α)} reads

φ = a
(0)
φ

1 + Aφ

1 + Bφ
. (41)

The expressions for the coefficientsAφ , Bφ in (41) read

Aφ = a
(1)
φ + Bφ Bφ = −a(2)φ /a(1)φ (42)

anda(i)φ are to be determined from the resolvent series int :

φ =
∑
i>0

a
(i)
φ t

i |t=1 . (43)

Substituting (36) and (37) into (38)–(40) and representing (38)–(40) in the form of (43) one
finds:

a(0)ν = 1
2

a(1)ν = [(n+ 2)/12] u− 3
2f

a(2)ν = [(n2 − n− 6)/144]u2 + [(71n+ 138)/48]f 2 + [(n+ 2)/12]uf

(44)

a(0)γ = 1

a(1)γ = [(n+ 2)/12]u

a(2)γ = [(n2 − 2n− 8)/144]u2 + [(5n+ 1)/4]f 2 + [5(n+ 2)/24]uf

(45)

a(0)α = 1

a(1)α = −[3(n+ 2)/12]u+ 9
2f

a(2)α = [(−3n2 + 3n+ 18)/144]u2 − [(71n+ 138)/16]f 2 − [(n+ 2)/4]uf .

(46)

Considering the casen = 2 and substituting the coordinates of the fixed point C2
(f ∗C,Padé = 0.158), u∗C2,Padé = 2.457 (see tables 1 and 2) into (44)–(46) one obtains
for the critical exponents (38)–(40):

ν = 0.857 γ = 1.880 α = −1.141. (47)

The application of the Padé approximants for the analytical continuation of the functions
may result in the appearance of poles in these functions. If the pole is located in a
region of expansion parameters which is unphysical (e.g. negative couplingu or f ) this
does not complicate the analysis. This was the case for theβ-functions in the region of
couplings less than the fixed-point values. For theζ -functions, however, considering the
non-asymptotic behaviour (and thus being far from the stable fixed point) one passes through
a region of couplings where the Padé approximation for theζ -functions becomes ambiguous
resulting in the appearance of a pole. Therefore studying the crossover behaviour in the
next subsection we will still keep the polynomial representation forζ -functions instead of
the Pad́e approximants. Then for the asymptotic values of critical exponents one finds

ν = 0.771 γ = 1.619 α = −0.314. (48)

Comparing the values of (47) and (48) shows a numerical difference of 15% inν and γ
and a considerable increase inα. However, there is no qualitative change (e.g. the sign of
the specific heat exponent remains the same).
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Figure 5. Effective exponentν for the flows shown in figure 4 (for further description see the
text).

4.2. Effective exponents and crossover

Effective exponents are usually defined by the logarithmic temperature derivatives of the
corresponding correlation functions (see e.g. [37]). These can be found from the solutions
of the renormalization-group equation for the renormalized vertex functions. These effective
exponents contain two contributions, one from the correspondingζ -functions now taken at
the valuesu(`), f (`) of the flow curve considered (‘exponent part’), and one from the change
of the corresponding scaling function (‘amplitude part’). The latter contributions will be
neglected since we expect them to be smaller than the differences for the fixed point values
of the exponents coming from the different treatments discussed before. Thus we have

ν = (2 − ζν(`))
−1 (49)

γ = (2 − ζν(`))
−1(2 − ζψ(`)) (50)

α = (2 − ζν(`))
−1(ε − 2ζν(`)) . (51)

The flow parameter̀ can be related to the relative temperature distance toTc by the match-
ing conditiont (`) = (ξ−1

0 `)2, with ξ0 the amplitude of the correlation length.
We have computed these effective exponents, see figures 5–7, along the flow lines shown

in figure 4 by inserting† the couplingsu(`) andf (`) into (49)–(51). For the separatrix 1
we started with initial conditions leading to a flow, which did not stick in the fixed point C1
but slightly missed it, although the flow curve did not differ from the separatrix within the
thickness of the lines shown in figure 4. For curve number 4 we started somewhat further
away from the Gaussian fixed point G, leading to initial values of the effective exponents
between their Gaussian values and their values for the uncharged fixed point U. Note that
the values of the effective exponentγ for the uncharged fixed point U and the charged fixed
point C1 are the same within the accuracy given by the scale of the figure.

† In fact, we have solved the flow equations (34), (35) starting near the unstable fixed points, for the initial value
of the flow parameter we took̀ = 1. Using different initial values (u(1) and f (1) on the separatrix) would
amount to rescaling the flow parameter.
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Figure 6. Effective exponentγ for the flows shown in figure 4 (for further description see the
text).

Figure 7. Effective exponentα for the flows shown in figure 4 (for further description see the
text).

5. Conclusion

In the present paper we have re-examined expressions for the renormalization-group
functions of the field-theoretical gauge model for a superconductor obtained previously
in the two-loop approximation [9]. The main point which is discussed in this context is
whether the equations forβ-functions possess a stable fixed point or not. The absence of a
stable fixed point is often interpreted as a change of the order of the phase transition (caused
by the presence of magnetic field fluctuations) and evidence of the fluctuation-induced first-
order phase transition. However, this change of the order of the phase transition (being
of second order in the absence of a coupling to the gauge field) is confirmed only by
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perturbation theory calculations in low orders ([2], see [9] and references therein as well).
By this paper we want to attract attention to the following problems:

(i) the series for the renormalization-group functions are not convergent and, generally
speaking, it is desirable to first prove their asymptotic nature (as it is proven in the pure
model case);

(ii) in the case where the series in the renormalized coupling constants are asymptotic
and have zero radius of convergence, one should perform appropriate analytical continuation
of these series in order to obtain reliable information on their basis.

In this paper we applied a simple Padé analysis to the series under discussion†. In the
case of one coupling such an approach gives a qualitatively correct picture of the phase
transition and restores the presence of a stable fixed point ([31], see formulae (16), (20)
of this paper). The same situation happens here in the case of two couplings: atn = 2
‘uncharged’ fixed point U (having coordinatesf ∗U,Padé = 0.158,u∗U,Padé = 2.457) appears
to be stable, which leads to a new set of critical exponents. Of course, being calculated
only in the two-loop approximation with application of Padé analysis, these values for the
critical exponents are to be considered as preliminary ones. The main point we claim here
is that in the frames of the renormalization-group analysis for the superconductor model
there still exists the possibility of a second-order phase transition characterized by a set of
critical exponents differing from those of4He.

Recently, the critical exponentη has been calculated in a self-consistent screening
approximation [12] and a value ofη = −0.38 was found. This may be compared with
the values obtained for the charged fixed point C2 in our calculations using the asymptotic
scaling lawη = 2 − γ /ν. From the values forγ and ν of (47) we findη = −0.19 and
from (48) we findη = −0.1, respectively. These values forη are well within the physical
rangeη > −1 at d = 3.
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